Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
J Bioenerg Biomembr ; 56(2): 87-99, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374292

RESUMO

High-fat diet-induced metabolic changes are not restricted to the onset of cardiovascular diseases, but also include effects on brain functions related to learning and memory. This study aimed to evaluate mitochondrial markers and function, as well as cognitive function, in a rat model of metabolic dysfunction. Eight-week-old male Wistar rats were subjected to either a control diet or a two-hit protocol combining a high fat diet (HFD) with the nitric oxide synthase inhibitor L-NAME in the drinking water. HFD plus L-NAME induced obesity, hypertension, and increased serum cholesterol. These rats exhibited bioenergetic dysfunction in the hippocampus, characterized by decreased oxygen (O2) consumption related to ATP production, with no changes in H2O2 production. Furthermore, OPA1 protein expression was upregulated in the hippocampus of HFD + L-NAME rats, with no alterations in other morphology-related proteins. Consistently, HFD + L-NAME rats showed disruption of performance in the Morris Water Maze Reference Memory test. The neocortex did not exhibit either bioenergetic changes or alterations in H2O2 production. Calcium uptake rate and retention capacity in the neocortex of HFD + L-NAME rats were not altered. Our results indicate that hippocampal mitochondrial bioenergetic function is disturbed in rats exposed to a HFD plus L-NAME, thus disrupting spatial learning, whereas neocortical function remains unaffected.


Assuntos
Dieta Hiperlipídica , Memória Espacial , Ratos , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Ratos Wistar , NG-Nitroarginina Metil Éster/farmacologia , NG-Nitroarginina Metil Éster/metabolismo , Peróxido de Hidrogênio/metabolismo , Aprendizagem em Labirinto , Hipocampo/metabolismo , Mitocôndrias/metabolismo
2.
Cell Tissue Res ; 394(2): 361-377, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37789240

RESUMO

Macrophage extracellular traps (METs) represent a novel defense mechanism in the antimicrobial arsenal of macrophages. However, mechanisms of MET formation are still poorly understood and this is at least partially due to the lack of reliable and reproducible models. Thus, we aimed at establishing a protocol of MET induction by bone marrow-derived macrophages (BMDMs) obtained from cryopreserved and then thawed bone marrow (BM) mouse cells. We report that BMDMs obtained in this way were morphologically (F4/80+) and functionally (expression of inducible nitric oxide (NO) synthase and NO production) differentiated and responded to various stimuli of bacterial (lipopolysaccharide, LPS), fungal (zymosan) and chemical (PMA) origin. Importantly, BMDMs were successfully casting METs composed of extracellular DNA (extDNA) serving as their backbone to which proteins such as H2A.X histones and matrix metalloproteinase 9 (MMP-9) were attached. In rendered 3D structure of METs, extDNA and protein components were embedded in each other. Since studies had shown the involvement of oxygen species in MET release, we aimed at studying if reactive nitrogen species (RNS) such as NO are also involved in MET formation. By application of NOS inhibitor - L-NAME or nitric oxide donor (SNAP), we studied the involvement of endogenous and exogenous RNS in traps release. We demonstrated that L-NAME halted MET formation upon stimulation with LPS while SNAP alone induced it. The latter phenomenon was further enhanced in the presence of LPS. Taken together, our findings demonstrate that BMDMs obtained from cryopreserved BM cells are capable of forming METs in an RNS-dependent manner.


Assuntos
Armadilhas Extracelulares , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Lipopolissacarídeos/farmacologia , Nitrogênio/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , Macrófagos/metabolismo , Óxido Nítrico/metabolismo
3.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176081

RESUMO

Sphingolipids are important biological mediators both in health and disease. We investigated the vascular effects of enhanced sphingomyelinase (SMase) activity in a mouse model of type 2 diabetes mellitus (T2DM) to gain an understanding of the signaling pathways involved. Myography was used to measure changes in the tone of the thoracic aorta after administration of 0.2 U/mL neutral SMase in the presence or absence of the thromboxane prostanoid (TP) receptor antagonist SQ 29,548 and the nitric oxide synthase (NOS) inhibitor L-NAME. In precontracted aortic segments of non-diabetic mice, SMase induced transient contraction and subsequent weak relaxation, whereas vessels of diabetic (Leprdb/Leprdb, referred to as db/db) mice showed marked relaxation. In the presence of the TP receptor antagonist, SMase induced enhanced relaxation in both groups, which was 3-fold stronger in the vessels of db/db mice as compared to controls and could not be abolished by ceramidase or sphingosine-kinase inhibitors. Co-administration of the NOS inhibitor L-NAME abolished vasorelaxation in both groups. Our results indicate dual vasoactive effects of SMase: TP-mediated vasoconstriction and NO-mediated vasorelaxation. Surprisingly, in spite of the general endothelial dysfunction in T2DM, the endothelial NOS-mediated vasorelaxant effect of SMase was markedly enhanced.


Assuntos
Diabetes Mellitus Tipo 2 , Óxido Nítrico Sintase Tipo III , Camundongos , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatação , Esfingomielina Fosfodiesterase/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , NG-Nitroarginina Metil Éster/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Óxido Nítrico/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo
4.
Int J Biochem Cell Biol ; 158: 106396, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36918141

RESUMO

Cancer continues to be a leading cause of death worldwide, making the development of new treatment methods crucial in the fight against it. With cancer incidence rates increasing worldwide, ongoing research must focus on identifying new and effective ways to prevent and treat the disease. The combination of herbal extracts with chemotherapeutic agents has gained much interest as a novel strategy to combat cancer. Rumex obtusifolius L. is a wild plant known for its medicinal properties and is widely distributed worldwide. Our preclinical evaluations suggested that R. obtusifolius seed extracts possessed cancer-inhibiting properties and we also evaluated the beneficial effects of the arginase inhibitor NG-hydroxy-nor-L-arginine and nitric oxide inhibitor NG-nitro-L-arginine methyl ester in the treatment of breast cancer. The current study aimed to combine these observations and evaluate the antioxidant and antitumor properties of R. obtusifolius extracts alone and in combination with the arginase and nitric oxide synthase inhibitors. Metabolic characterization of the plant extract using a liquid chromatography/high-resolution mass spectrometry advanced system revealed the presence of 240 phenolic compounds many of which possess anticancer properties, according to the literature. In vitro studies revealed a significant cytotoxic effect of the R. obtusifolius extracts on the human colon (HT29) and breast cancer (MCF-7) cell lines. Thus, a new treatment approach of combining R. obtusifolius bioactive phytochemicals with the arginase and nitric oxide synthase inhibitors NG-nitro-L-arginine methyl ester and/or NG-hydroxy-nor-L-arginine, respectively, was proposed and could potentially be an effective way to treat breast cancer. Indeed, these combinations showed immunostimulatory, antiproliferative, antioxidant, anti-inflammatory, and antiangiogenic properties in a rat breast cancer model.


Assuntos
Neoplasias da Mama , Rumex , Ratos , Humanos , Animais , Feminino , NG-Nitroarginina Metil Éster/metabolismo , Rumex/química , Rumex/metabolismo , Arginase/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Regulação para Baixo , Arginina/metabolismo , Estresse Oxidativo , Óxido Nítrico/metabolismo , Inflamação/tratamento farmacológico , Óxido Nítrico Sintase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Poliaminas
5.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769045

RESUMO

Focal segmental glomerulosclerosis (FSGS) is a major cause of end-stage renal disease and remains without specific treatment. To identify new events during FSGS progression, we used an experimental model of FSGS associated with nephroangiosclerosis in rats injected with L-NAME (Nω-nitro-L-arginine methyl ester). After transcriptomic analysis we focused our study on the role of Isthmin-1 (ISM1, an anti-angiogenic protein involved in endothelial cell apoptosis. We studied the renal expression of ISM1 in L-NAME rats and other models of proteinuria, particularly at the glomerular level. In the L-NAME model, withdrawal of the stimulus partially restored basal ISM1 levels, along with an improvement in renal function. In other four animal models of proteinuria, ISM1 was overexpressed and localized in podocytes while the renal function was degraded. Together these facts suggest that the glomerular expression of ISM1 correlates directly with the progression-recovery of the disease. Further in vitro experiments demonstrated that ISM1 co-localized with its receptors GRP78 and integrin αvß5 on podocytes. Treatment of human podocytes with low doses of recombinant ISM1 decreased cell viability and induced caspase activation. Stronger ISM1 stimuli in podocytes dropped mitochondrial membrane potential and induced nuclear translocation of apoptosis-inducing factor (AIF). Our results suggest that ISM1 participates in the progression of glomerular diseases and promotes podocyte apoptosis in two different complementary ways: one caspase-dependent and one caspase-independent associated with mitochondrial destabilization.


Assuntos
Glomerulosclerose Segmentar e Focal , Podócitos , Animais , Humanos , Ratos , Inibidores da Angiogênese/uso terapêutico , Caspases/metabolismo , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo
6.
Adv Clin Exp Med ; 32(3): 357-367, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36330842

RESUMO

BACKGROUND: Hypertensive disorders complicating pregnancy (HDCP) are one of the most serious medical disorders during pregnancy. OBJECTIVES: To investigate the effects of hydrogen on the mitogen-activated protein kinase (MAPK) signaling pathway in preeclampsia (PE). MATERIAL AND METHODS: The N(omega)-nitro-L-arginine methyl ester (L-NAME)-induced PE model with Sprague Dawley (SD) rats was employed. An inhibitor of MAPK signaling pathways (SB203580) was used as a p38 MAPK inhibitor. The SD rats were randomized into 5 groups: non-pregnant (NP); normal pregnancy (P); pregnancy + L-NAME (L); pregnancy + L-NAME + hydrogen-rich saline (LH); and pregnancy + L-NAME + hydrogen-rich saline + SB203580 (LHS). The pregnancies were terminated on day 22 of gestation, and the placentas and kidneys were microscopically inspected. Tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß) and malondialdehyde (MDA) levels were assessed. The mean systolic blood pressure (SBP) and level of proteinuria were recorded. The p38 MAPK mRNA expression and p-p38 MAPK protein levels were measured using real-time polymerase chain reaction (RT-PCR) and western blot, respectively. RESULTS: It was found that hydrogen-rich saline (LH group) decreased placental MDA, proteinuria, TNF-α, and IL-1ß levels in the placental tissues compared with the L group (all p < 0.05). Additionally, hydrogen-rich saline (LH group) treatment significantly decreased the p38 MAPK mRNA expression and p-p38 MAPK protein levels compared with the L group (p < 0.05). The p38 MAPK inhibitor SB203580 (LHS group) further decreased the p38 MAPK mRNA expression and p-p38 MAPK protein levels compared with the LH group (p < 0.05). CONCLUSIONS: Hydrogen can decrease the reactive oxygen species (ROS) content and inhibit the MAPK pathway. The protective effect of hydrogen may be associated with the inhibition of the p38 MAPK signaling pathway.


Assuntos
Pré-Eclâmpsia , Proteínas Quinases p38 Ativadas por Mitógeno , Ratos , Humanos , Animais , Feminino , Gravidez , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ratos Sprague-Dawley , NG-Nitroarginina Metil Éster/efeitos adversos , NG-Nitroarginina Metil Éster/metabolismo , Hidrogênio/efeitos adversos , Hidrogênio/metabolismo , Placenta , Transdução de Sinais , Estresse Oxidativo , Sistema de Sinalização das MAP Quinases , Inibidores de Proteínas Quinases/farmacologia , Proteinúria/metabolismo , RNA Mensageiro/metabolismo
7.
Life Sci Alliance ; 5(12)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36260752

RESUMO

Preeclampsia affects ∼2-8% of pregnancies worldwide. It is associated with increased long-term maternal cardiovascular disease risk. This study assesses the effect of the vasoconstrictor N(ω)-nitro-L-arginine methyl ester (L-NAME) in modelling preeclampsia in mice, and its long-term effects on maternal cardiovascular health. In this study, we found that L-NAME administration mimicked key characteristics of preeclampsia, including elevated blood pressure, impaired fetal and placental growth, and increased circulating endothelin-1 (vasoconstrictor), soluble fms-like tyrosine kinase-1 (anti-angiogenic factor), and C-reactive protein (inflammatory marker). Post-delivery, mice that received L-NAME in pregnancy recovered, with no discernible changes in measured cardiovascular indices at 1-, 2-, and 4-wk post-delivery, compared with matched controls. At 10-wk post-delivery, arteries collected from the L-NAME mice constricted significantly more to phenylephrine than controls. In addition, these mice had increased kidney Mmp9:Timp1 and heart Tnf mRNA expression, indicating increased inflammation. These findings suggest that though administration of L-NAME in mice certainly models key characteristics of preeclampsia during pregnancy, it does not appear to model the adverse increase in cardiovascular disease risk seen in individuals after preeclampsia.


Assuntos
Doenças Cardiovasculares , Pré-Eclâmpsia , Animais , Feminino , Camundongos , Gravidez , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Modelos Animais de Doenças , Endotelina-1/genética , Endotelina-1/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , NG-Nitroarginina Metil Éster/metabolismo , Fenilefrina/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , RNA Mensageiro/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vasoconstritores/metabolismo
8.
Plant Physiol Biochem ; 190: 262-276, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152511

RESUMO

As a multifunctional phytohormone, melatonin (Mel) plays pivotal roles in plant responses to multiple stresses. However, its mechanism of action remains elusive. In the present study, we evaluated the role of NO and Ca2+ signaling in Mel enhanced cold tolerance in winter turnip rape. The results showed that the NO content and concentration of intracellular free Ca2+ ([Ca2+]cyt) increased by 35.42% and 30.87%, respectively, in the leaves of rape seedlings exposed to cold stress. Compared with those of the seedlings in cold stress alone, the NO content and concentration of [Ca2+]cyt in rape seedlings pretreated with Mel increased further. In addition, the Mel-mediated improvement of cold tolerance was inhibited by L-NAME (a NO synthase inhibitor), tungstate (a nitrate reductase inhibitor), LaCl3 (a Ca2+ channel blocker), and EGTA (a Ca2+ chelator), and this finding was mainly reflected in the increase in ROS content and the decrease in osmoregulatory capacity, photosynthetic efficiency and antioxidant enzyme activities, and expression levels of antioxidant enzyme genes. These findings suggest that NO and Ca2+ are necessary for Mel to improve cold tolerance and function synergistically downstream of Mel. Notably, the co-treatment of Mel with L-NAME, tungstate, LaCl3, or EGTA also inhibited the Mel-induced expression of MAPK3/6 under cold stress. In conclusion, NO and Ca2+ are involved in the enhancement of cold tolerance induced by Mel through activating the MAPK cascades in rape seedlings, and a crosstalk may exist between NO and Ca2+ signaling.


Assuntos
Brassica napus , Brassica rapa , Melatonina , Antioxidantes/metabolismo , Brassica napus/metabolismo , Brassica rapa/genética , Quelantes/metabolismo , Ácido Egtázico , Melatonina/metabolismo , Melatonina/farmacologia , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico Sintase/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismo , Compostos de Tungstênio
9.
Bioorg Chem ; 129: 106110, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087551

RESUMO

Using dehydroabietic acid as the lead compound for structural modification, 25 dehydroabietic acid derivatives were synthesized. Among them, compound D1 not only showed the strongest relaxation effect on the aortic vascular ring in vitro (Emax = 99.5 ± 2.1%, EC50 = 3.03 ± 0.96 µM), but also significantly reduced systolic and diastolic blood pressure in rats at a dose of 2.0 mg/kg in vivo. Next, the vascular protective effect of the best active D1 and its molecular mechanism were further investigated by HUVECs. The results showed that D1 induced endothelium-dependent diastole in the rat thoracic aorta in a concentration-dependent manner. Endothelium removal or aortic ring pretreatment with NG-nitro-l-arginine methylester (l-NAME), 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ), and tetraethylammonium (TEA) significantly inhibited D1-induced relaxation. In addition, wortmannin, KT5823, triciribine, diltiazem, BaCl2, 4-aminopyridine, indomethacin, propranolol, and atropine attenuated D1-induced vasorelaxation. D1 increased the phosphorylation of eNOS in HUVECs Furthermore, D1 attenuated the expression of TNF-α-induced cell adhesion molecules such as ICAM-1 and VCAM-1. However, this effect was attenuated by the eNOS inhibitors l-NAME and asymmetric dimethylarginine (ADMA). The findings suggest that D1-induced vasorelaxation through the PI3K/Akt/eNOS/NO/cGMP/PKG pathway by activating the KCa, Kir and KV channels or muscarinic and ß-adrenergic receptors, and inhibiting the l-type Ca2+ channels, which is closely related to the hypotensive action of the agent. Furthermore, D1 exhibits an inhibitory effect on vascular inflammation, which is associated with the observed vascular protective effects.


Assuntos
Vasodilatação , Vasodilatadores , Animais , Ratos , Aorta Torácica , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Vasodilatadores/química , Tetraetilamônio/química
10.
Chem Biol Interact ; 366: 110174, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089060

RESUMO

Dibutyl phthalate (DBP) is an endocrine disruptor that has been widely used in various products of human use. DBP exposure has been associated with reproductive and cardiovascular diseases and metabolic disorders. Although dysfunction of the vascular endothelium is responsible for many cardiovascular and metabolic diseases, little is known about the effects of DBP on human endothelium. In this study, we investigated the effect of three concentrations of DBP (10-6, 10-5, and 10-4 M) on angiogenesis in human endothelial cell (EC) line EA.hy926 after acute exposure. Tube formation assay was used to investigate in vitro angiogenesis, whereas qRT-PCR was employed to measure mRNA expression. The effect of DBP on extracellular signal-regulated kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt), and endothelial nitric oxide (NO) synthase (eNOS) activation was examined using Western blotting, whereas the Griess method was used to assess NO production. Results show that the 24-h-long exposure to 10-4 M DBP increased endothelial tube formation, which was prevented by addition of U0126 (ERK1/2 inhibitor), wortmannin (PI3K-Akt inhibitor), and l-NAME (NOS inhibitor). Short exposure to 10-4 M DBP (from 15 to 120 min) phosphorylated ERK1/2, Akt, and eNOS in different time points and increased NO production after 24 and 48 h of exposure. Application of nuclear estrogen receptor (ER) and G protein-coupled ER (GPER) inhibitors ICI 182,780 and G-15, respectively, abolished the DBP-mediated ERK1/2, Akt, and eNOS phosphorylation and increase in NO production. In this study, we report for the first time that DBP exerts a pro-angiogenic effect on human vascular ECs and describe the molecular mechanism involving ER- and GPER-dependent activation of ERK1/2, PI3K-Akt, and NO signaling pathways.


Assuntos
Disruptores Endócrinos , Proteínas Proto-Oncogênicas c-akt , Dibutilftalato/toxicidade , Fulvestranto , Proteínas de Ligação ao GTP/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Wortmanina/farmacologia
11.
Amino Acids ; 54(12): 1553-1568, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35972552

RESUMO

Previous work has shown that dietary L-arginine (Arg) supplementation reduced white fat mass in obese rats. The present study was conducted with cell models to define direct effects of Arg on energy-substrate oxidation in hepatocytes, skeletal muscle cells, and adipocytes. BNL CL.2 mouse hepatocytes, C2C12 mouse myotubes, and 3T3-L1 mouse adipocytes were treated with different extracellular concentrations of Arg (0, 15, 50, 100 and 400 µM) or 400 µM Arg + 0.5 mM NG-nitro-L-arginine methyl ester (L-NAME; an NOS inhibitor) for 48 h. Increasing Arg concentrations in culture medium dose-dependently enhanced (P < 0.05) the oxidation of glucose and oleic acid to CO2 in all three cell types, lactate release from C2C12 cells, and the incorporation of oleic acid into esterified lipids in BNL CL.2 and 3T3-L1 cells. Arg at 400 µM also stimulated (P < 0.05) the phosphorylation of AMP-activated protein kinase (AMPK) in all three cell types and increased (P < 0.05) NO production in C2C12 and BNL CL.2 cells. The inhibition of NOS by L-NAME moderately reduced (P < 0.05) glucose and oleic acid oxidation, lactate release, and the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in BNL CL.2 cells, but had no effect (P > 0.05) on these variables in C2C12 or 3T3-L1 cells. Collectively, these results indicate that Arg increased AMPK activity and energy-substrate oxidation in BNL CL.2, C2C12, and 3T3-L1 cells through both NO-dependent and NO-independent mechanisms.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácido Oleico , Ratos , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Ácido Oleico/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Adipócitos/metabolismo , Células 3T3-L1 , Glucose/metabolismo , Hepatócitos/metabolismo , Arginina/metabolismo , Lactatos/metabolismo , Lactatos/farmacologia , Músculo Esquelético/metabolismo
12.
J Physiol Biochem ; 78(4): 915-932, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35943663

RESUMO

Arterial hypertension (AH) leads to oxidative and inflammatory imbalance that contribute to fibrosis development in many target organs. Here, we aimed to highlight the harmful effects of severe AH in the cornea. Our experimental model was established by administration of NG-nitro-L-arginine-methyl-ester (L-NAME) to C57BL/6 mice, which were monitored weekly for arterial blood pressure and intraocular pressure (IOP). Morphological studies of ocular tissues were accompanied by analyses of reactive oxygen species generation, and localization/expression of NAPDH oxidase isoforms (NOX1, NOX2, NOX4) and inflammatory biomarkers (PPARα, PPARγ, IL-1ß, IL-6, IL-10, TNF-α, and COX-2). Masson's trichrome and Sirius Red staining were used to explore the fibrotic status of the cornea. The expression of collagen isoforms (COL1α1, COL1α2, COL3α1, COL4α1, COL4α2) and relevant metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) were also quantified to evaluate the participation of collagen metabolism in AH-related corneal damage. Hypertensive animals showed an increase in IOP values, and a thinner cornea compared with normotensive controls. Moreover, AH increased NADPH oxidase activity and reactive oxygen species generation in the cornea, which was accompanied by transcriptional upregulation of NOX isoforms and inflammatory biomarkers, while reducing PPAR expression. L-NAME-treated animals also developed corneal fibrosis with overexpression of collagen isoforms and reduction of factors responsible for collagen degradation. This is the first study reporting structural changes in the cornea and elevated IOP in L-NAME-treated mice. Overexpression of the NADPH oxidase system and collagen deposition might play a substantial role in the pathogenic mechanisms contributing to ocular disturbances in a context of severe hypertension.


Assuntos
Hipertensão , Óxido Nítrico , Camundongos , Animais , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fibrose , Estresse Oxidativo , Colágeno/metabolismo , Biomarcadores/metabolismo , Córnea/metabolismo , Córnea/patologia
13.
Eur J Pharmacol ; 929: 175132, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792173

RESUMO

BACKGROUND: Chronic inflammation and oxidative stress play important role in development of hypertension. Recently, we have reported novel fluorophenyl benzimidazole (FPD) for vasorelaxation and antihypertensive activity in SHRs. The present study envisaged the anti-inflammatory, anti-oxidant and cardio-protective properties of FPD in L-NAME model of hypertension with special emphasis on reversal of vascular remodeling, gene expression and restoration of hemodynamic. METHODS: Antihypertensive activity of FPD was evaluated in L-NAME treated Wistar rats, and the parameters studied were anti-inflammatory activity, histomorphological changes, gene expression profile and anti-oxidant properties. RESULTS: FPD at 50 and 100 mg kg-1 once daily for 15 days significantly reduced SBP, DBP and MAP in L-NAME treated rats and the values were well comparable to vehicle control group. Further, FPD treatment showed a significant increase in hepatic GSH content, SOD, catalase activity, decreased MDA level and restoration of pro and anti-inflammatory cytokine levels. The mRNA expression profile of genes associated with regulation of vascular tone, remodeling and inflammation showed a significant level of alteration by chronic L-NAME treatment and was dose-dependently restored upon treatment with FPD. Further, FPD treatment restored serum lipid profile, CK, CK-MB and LDH level and also reversed the histomorphological changes like intimal wall thickening, hyperplasia of cardiomyocytes and ventricular wall thickening. CONCLUSIONS: Taken together, FPD produced potent antihypertensive activity in L-NAME model through vasorelaxation, anti-oxidative and anti-inflammatory properties leading to restoration of serum lipid profile, cardiac biomarker, expression profile of target genes and reversal of histomorphological changes.


Assuntos
Anti-Hipertensivos , Hipertensão , Animais , Anti-Hipertensivos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Pressão Sanguínea , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipídeos , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
14.
Pharmacol Rep ; 74(4): 669-683, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35819592

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a progressive subtype of non-alcoholic fatty liver disease (NAFLD) that is closely related to cardiovascular disease (CVD). Nitric oxide (NO) plays a critical role in the control of various biological processes. Dysfunction of the NO signaling pathway is associated with various diseases such as atherosclerosis, vascular inflammatory disease, and diabetes. Recently, it has been reported that NO is related to lipid and cholesterol metabolism. Chronic NO synthase (NOS) inhibition accelerates NAFLD by increasing hepatic lipid deposition. However, the detailed relationship between NO and abnormal lipid and cholesterol metabolism in NAFLD/NASH has not been completely explained. We aimed to determine the effects of NOS inhibition by N omega-nitro-L-arginine methyl ester hydrochloride (L-NAME), a NOS inhibitor, on NASH and CVD via lipid and cholesterol metabolism. METHODS: Stroke-prone spontaneously hypertensive rats were fed a high-fat and high-cholesterol diet for 8 weeks and administered L-NAME for the last 2 weeks. Following blood and tissue sampling, biochemical analysis, histopathological staining, quantitative RT-PCR analysis, and western blotting were performed. RESULTS: L-NAME markedly increased hepatic triglyceride (TG) and cholesterol levels by promoting TG synthesis and cholesterol absorption from the diet. L-NAME increased the mRNA levels of inflammatory markers and fibrotic areas in the liver. Cholesterol secretion from the liver was promoted in rats administered L-NAME, which increased serum cholesterol. L-NAME significantly increased the level of oxidative stress marker and lipid deposition in the arteries. CONCLUSIONS: NOS inhibition simultaneously aggravates NASH and atherosclerosis via hepatic lipid and cholesterol metabolism.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Hepatopatia Gordurosa não Alcoólica , Aceleração , Animais , Aterosclerose/metabolismo , Biomarcadores , Doenças Cardiovasculares/complicações , Colesterol , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Fígado , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Ratos , Ratos Endogâmicos SHR
15.
J Food Biochem ; 46(9): e14234, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35608959

RESUMO

This research aimed to explore the effects of the nitric oxide synthase (NOS) inhibitor (L-NAME) on mitochondria apoptosis in postmortem Gannan yak (Bos grunniens) longissimus dorsi (LD) muscle and to explore its effect on meat quality further. The Gannan yak meat samples were treated with the control group (0.9% NaCl) and L-NAME (20, 60, and 100 mM) for 24 h and then stored for 0, 1, 3, 5, and 7 days at 4°C. NOS activity and NO content were investigated, and the parameters of mitochondrial apoptosis of the postmortem Gannan yak meat were determined. Meanwhile, the meat quality such as the centrifugation loss, meat color, and myofibril fragmentation index (MFI) was evaluated. The results indicated that after treatment with L-NAME, NOS activity and NO content decreased, causing mitochondrial membrane damage, Bax protein, and Cyt-c levels increased, and resulted in increased activities of caspase-9 and -3, promoting the occurrence of mitochondrial apoptosis. Furthermore, it increased the tenderness and water retention of Gannan yak meat. The results indicated that NOS inhibitor played a regulatory role in postmortem Gannan yak meat quality by regulating mitochondria apoptosis during postmortem aging. PRACTICAL APPLICATIONS: The meat's tenderness is often considered the most important factor affecting consumers' willingness to repurchase. The relationship of caspases and MFI suggested that L-NAME played a regulatory role in postmortem Gannan yak meat quality by regulating mitochondria apoptosis during postmortem aging. This study provides valuable information for the development of the Gannan yak economy in Tibetan areas.


Assuntos
Carne , Mitocôndrias , Animais , Apoptose , Bovinos , Carne/análise , Mitocôndrias/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico Sintase/metabolismo
16.
Bioengineered ; 13(4): 10038-10046, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416124

RESUMO

Praeruptorin A (PA) is a natural coumarin compound from the roots of Radix Peucedani and is commonly used in the treatment of certain respiratory diseases and hypertension. Although previous studies identified relaxant effects of PA on tracheal and arterial preparations, little is known about its vasodilative effects and underlying mechanisms. Here, an organ bath system and tension recording methods were used to prepare and analyze isolated rat thoracic aorta artery rings. Aorta artery rings were pre-contracted with phenylephrine and then incubated with PA, and the possible mechanism of relaxation was investigated by adding inhibitors of nitric oxide synthase (NG-nitro-L-arginine methyl ester, L-NAME), endothelial nitric oxide synthase (L-NG-nitroarginine, L-NNA), cyclooxygenase (indomethacin), guanylyl cyclase (1 H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one, ODQ), and KCa channels (tetraethylammonium, TEA). Our study showed that PA-induced vasodilation was blocked by L-NAME, L-NNA, and ODQ, while CaCl2-induced vasoconstriction was countered by PA. Thus, PA may exert a vasodilatory effect by influencing the amounts of endothelium-derived relaxing factors through endothelial-dependent NO-cGMP and prostacyclin pathways (such as NO and prostacyclin 2). In the rat thoracic aorta, PA reduces vasoconstriction by inhibiting Ca2+ inflow.


Assuntos
Aorta Torácica , Vasodilatadores , Animais , Aorta Torácica/metabolismo , Cumarínicos , Endotélio Vascular/metabolismo , Epoprostenol/metabolismo , Epoprostenol/farmacologia , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Vasodilatadores/metabolismo , Vasodilatadores/farmacologia
17.
Placenta ; 121: 116-125, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35306432

RESUMO

INTRODUCTION: Preeclampsia (PE) is associated with abnormal placental vascular structure. However, the volume density of fetoplacental vessels in PE remains unclear. Additionally, manually annotated CT angiography, which is widely used to analyze placental vessels, has issues regarding inaccuracy. Thus, computer-aided CT angiography for analyzing the volume density of fetoplacental vessels would facilitate the understanding of PE pathogenesis. METHODS: We performed computer-aided CT angiography to compare differences in placentas among 17 women with PE and 34 normotensive women. The contrast ratio in CT angiography was significantly enhanced using a three-dimensional (3-D) Hessian matrix algorithm. The PE-like mouse model was established by administration of 125 mg/kg/day NG-nitro-l-arginine methyl ester (l-NAME) for 10 days. The presence of endothelial marker CD31 was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The expression of angiogenic factors (PlGF, VEGFA, and sFlt1) in placentas was detected using qRT-PCR and western blotting. RESULTS: The volume density in fetoplacental vessels and CD31 expression were significantly reduced in women with PE and l-NAME-induced mice. Additionally, the downregulation of angiogenic factors (PlGF/VEGFA) and upregulation of an anti-angiogenic factor (sFlt1) were determined in a mouse model. DISCUSSION: Contrast-enhanced CT angiography with the aid of a 3-D Hessian matrix algorithm was performed. PE significantly affects the formation of vascular vessels, resulting in a lower volume density of fetoplacental vessels in humans and mice. This may be explained by the abnormal release of angiogenic factors during PE.


Assuntos
Pré-Eclâmpsia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Indutores da Angiogênese/metabolismo , Animais , China , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Placenta/metabolismo , Fator de Crescimento Placentário/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Lab Invest ; 102(8): 805-813, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35354915

RESUMO

Sickle cell disease (SCD) is associated with repeated bouts of vascular insufficiency leading to organ dysfunction. Deficits in revascularization following vascular injury are evident in SCD patients and animal models. We aimed to elucidate whether enhancing nitric oxide bioavailability in SCD mice improves outcomes in a model of vascular insufficiency. Townes AA (wild type) and SS (sickle cell) mice were treated with either L-Arginine (5% in drinking water), L-NAME (N(ω)-nitro-L-arginine methyl ester; 1 g/L in drinking water) or NO-generating hydrogel (PA-YK-NO), then subjected to hindlimb ischemia via femoral artery ligation and excision. Perfusion recovery was monitored over 28 days via LASER Doppler perfusion imaging. Consistent with previous findings, perfusion was impaired in SS mice (63 ± 4% of non-ischemic limb perfusion in AA vs 33 ± 3% in SS; day 28; P < 0.001; n = 5-7) and associated with increased necrosis. L-Arginine treatment had no significant effect on perfusion recovery or necrosis (n = 5-7). PA-YK-NO treatment led to worsened perfusion recovery (19 ± 3 vs. 32 ± 3 in vehicle-treated mice; day 7; P < 0.05; n = 4-5), increased necrosis score (P < 0.05, n = 4-5) and a 46% increase in hindlimb peroxynitrite (P = 0.055, n = 4-5). Interestingly, L-NAME worsened outcomes in SS mice with decreased in vivo lectin staining following ischemia (7 ± 2% area in untreated vs 4 ± 2% in treated mice, P < 0.05, n = 5). Our findings demonstrate that L-arginine and direct NO delivery both fail to improve postischemic neovascularization in SCD. Addition of NO to the inflammatory, oxidative environment in SCD may result in further oxidative stress and limit recovery.


Assuntos
Anemia Falciforme , Água Potável , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Animais , Arginina/metabolismo , Arginina/farmacologia , Disponibilidade Biológica , Água Potável/metabolismo , Membro Posterior/irrigação sanguínea , Isquemia , Camundongos , Músculo Esquelético/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Necrose/metabolismo , Neovascularização Fisiológica , Óxido Nítrico/metabolismo , Fluxo Sanguíneo Regional
19.
Eur J Pain ; 26(4): 888-901, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35090066

RESUMO

BACKGROUND: Nitric oxide (NO) levels in brain nuclei, such as the hippocampus and brainstem, are involved in morphine analgesia, but the relationship between the dorsal hippocampus (dH) and the dorsolateral periaqueductal gray matter (dlPAG) needs to be clarified, which is our goal. METHODS: Wistar rats were simultaneously equipped with a stereotaxic device with unilateral guide cannula at dH and dlPAG. After recovery, they were divided into control and experimental groups. Formalin (50 µl of 2.5%) was inoculated into the left hind paw of the rat. Morphine (6 mg/kg) was administered intraperitoneally (i.p.) 10 min before formalin injection. L-Arginine (0.25, 0.5, 1 and 2 µg/rat), and L-NAME (0.25, 0.5, 1 and 2 µg/rat), unrelatedly or with respect in the order of injection were used in the nuclei before morphine injection (i.p.). Activation of the neuronal NO synthase (nNOS) in the brains of all animals was measured using NADPH-diaphorase, a selective biochemical marker of nNOS. RESULTS: Morphine reduced inflammatory pain in the early and late stages of the rat formalin test. The morphine response was attenuated before injection of single L-arginine but not L-NAME in the two target areas. However, the acute phase result was stopped due to L-NAME pretreatment. When L-NAME was injected into dlPAG before injecting L-arginine at dH, the morphine response did not decrease at all, indicating a modulatory role of NO in dlPAG, which was confirmed by NADPH-d staining. CONCLUSIONS: High levels of NO in dlPAG may regulate the pain process in downward synaptic interactions. SIGNIFICANCE: Nitric oxide is involved in the dH and dlPAG in morphine-induced analgesia in the rat formalin test. Morphine has analgesic effects in both phases of the rat formalin test. The morphine response is reduced in two stages by injection of the NO precursor L-arginine but not the nNOS inhibitor L-NAME in the dH and dlPAG. By injecting L-NAME before L-arginine in both nuclei, the morphine-induced response returns in the early stages. Due to the initial injection of L-NAME into dlPAG and the subsequent injection of L-arginine at dH, morphine analgesia is not reduced at all, indicating NO modulation in the pain pathway from dH to dlPAG.


Assuntos
Analgesia , Substância Cinzenta Periaquedutal , Animais , Hipocampo/metabolismo , Morfina , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/efeitos adversos , Óxido Nítrico/metabolismo , Dor/metabolismo , Ratos , Ratos Wistar
20.
Biomed Pharmacother ; 154: 113642, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36942598

RESUMO

BACKGROUND: The main cause of death among patients with malignant hypertension is a kidney failure. The promising field in essential and malignant hypertension therapy could be centered on the amelioration of oxidative stress using antioxidant molecules like resveratrol. Resveratrol is a potent antioxidative agent naturally occurred in many plants that possess health-promoting properties. METHODS: In the present study, we investigated the therapeutic potential of resveratrol, a polyphenol with anti-oxidative activity, in NG-L-Arginine Methyl Ester (L-NAME) treated spontaneously hypertensive rats (SHR) - malignantly hypertensive rats (MHR). RESULTS: Resveratrol significantly improves oxidative damages by modulation of antioxidant enzymes and suppression of prooxidant factors in the kidney tissue of MHR. Enhanced antioxidant defense in the kidney improves renal function and ameliorates the morphological changes in this target organ. Besides, protective properties of resveratrol are followed by the restoration of the nitrogen oxide (NO) pathway. 4) Conclusion: Antioxidant therapy with resveratrol could represent promising therapeutical approach in hypertension, especially malignant, against kidney damage.


Assuntos
Hipertensão Maligna , Hipertensão , Ratos , Animais , Antioxidantes/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Óxido Nítrico/metabolismo , Hipertensão Maligna/tratamento farmacológico , Hipertensão Maligna/metabolismo , Hipertensão Maligna/patologia , Disponibilidade Biológica , Hipertensão/metabolismo , Rim/patologia , Ratos Endogâmicos SHR , Estresse Oxidativo , NG-Nitroarginina Metil Éster/metabolismo , Pressão Sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...